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Current statistics for wave transmission through an open Sinai billiard: Effects of net currents
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Transport through quantum and microwave cavities is studied by analytic and numerical techniques. In
particular, we consider the statistics for a finite net probability curi@aynting vector(j) flowing through an
open ballistic Sinai billiard to which two opposite leads/wave guides are attached. We show that if the net
probability current is small, the scattering wave function inside the billiard is well approximated by a Gaussian
random complex field. In this case, the current statistics are universal and obey simple analytic forms. For
larger net currents, these forms still apply over several orders of magnitudes. However, small characteristic
deviations appear in the tail regions. Although the focus is on electron and microwave billiards, the analysis is
relevant also to other classical wave cavities as, for example, open planar acoustic reverberation rooms, elastic
membranes, and water surface waves in irregularly shaped vessels.
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. INTRODUCTION (V2+K)y=0, (2

Historically, McDonald and Kaufman revealed numeri- with the Dirichlet boundary conditions throughout. A sche-
cally the complicated morphology of the eigenstates in amatic view of the system is shown in Fig. 1. The energy flow
closed two-dimensional Bunimovich billiafd]. As is now  between input and output waveguides is given by the Poyn-
well known, the statistics of major eigenfunction amplitudesting vectorj=Im(4*V ¢). There is also a close similarity
follow a Gaussian distribution. The statistics of the squaredetween electron transport and microwaves with acoustic
amplitudes(the probability density for the case of quantum waves[18]. Neumann boundary conditions are to be imposed
billiard) then obeys the Porter-Thomas distributi@has de- in this case, but as before, there is an energy flow very much
scribed by the Gaussian orthogonal ensenf@®E). This  like the Poynting vector.
kind of statistic has been observed experimentally for micro-  As indicated, there is thus a close formal similarity be-
wave cavitieg3,4] and acoustic resonatofs,6]. These gen- tween (noninteracting electron transport and microwave
eral observations do not apply to wave functions that argropagation in open quantum dots and microwave cavities,
scarred along unstable periodic orbits, or show regular patespectively. There is, however, a subtle difference. Electron
terns associated with bouncing ball motipfi. Such states transport is usually multichannghannel refers to the trans-
are, however, more rare. verse modes in the leadsThe total current is therefore the

Here we consider what happens when a two-dimensionajum of contributions from all states at the Fermi energy.
billiard is made open by attaching two wave guid@  Microwaves, the other hand, are injected as single-mode
lead$ and a stationary transport through the system takestates. When comparing electron and microwave transport
place. In the case of electrons, for example, a current may bge should therefore restrict ourselves to monochromatic
induced by applying a small voltage between the two leadssingle-mode issues.

The additional flexibility gained in this way gives rise to a  Based on an assumption thaandv in (1) are both ran-
number of interesting cases for the scattering wave-functiodom Gaussian fields, the probability current statistics were

statistics. By assuming that the scattering function forms &tudied both analytically and numerically for transport
random Gaussian complex field, these cases were considered

in [8-10. In bypassing previous analytical results for wave- f(x)
function statistic§11-14 were recovered also for this kind \ 2
of open billiards[9,10]. y
Another rich system for studying “wave-function” prop- /
erties and transport is a microwave resonator consisting of a | X L d[—
planar waveguide, whose geometry is chosen to match that y
of some specific billiard systerf8,14-17. For TM modes ! '
the two-dimensional complex scattering function, M !
| |
! L, !
W) = U + o), @ FIG. 1. Schematic geometry of an open hard-walled billiard
with a net current in the direction. Functiong;(x) andf,(x) define
obeys the Helmholtz equation, the boundaries of the cavity.
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TABLE |. Numerically computed mean values.
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through a Bunimovich billiard10]. Using the one-to-one
correspondence between the Poynting vector in a microwave
billiard and the probability current density, Barth and Stdck-
mann obtained a good agreement with theoretical predictions
[15]. Recently, Brouwef19] considered the joint distribution
I(r)=A|y(r)|?> and the magnitude of the normalized current
density J(r)=(A/k)[Im ¢*V |, where A is the area of bil-
liard. His considerations are based on Berry's ansatz for a
chaotic wave functiori20],

¥r) = % ak)er, 3)

where the wave vectolls are distributed homogeneously on
a circle with constant radiu&| and the coefficienta(k) are
the random complex coefficients.

The current and wave-function statistics [i®,10] have
focused on the particular situation when the net probability
flow through the cavity is relatively small because of the
particular choice of perpendicular leads. In practice one may
then disregard the net current flow in relation to all other
local currents induced within the cavity. This is obviously the
same as saying that the distribution fois in practice iso-
tropic. This follows in particular from(3). The purpose of
this work is to go beyond this simplification. We will there-
fore consider the general case of a net current flowing from
the input to the output leads through a chaotic billiard, as
shown in Fig. 1. As mentioned, we will focus on the case of
monochromatic single-mode transmission. Because the
straight leads are opposite each other the current becomes
more directional. By solving the true scattering problem nu-
merically we demonstrate that the assumption that the in-
cavity scattering function is a random Gaussian field is quite
a good one for small net currents. However, with increasing
net currents this assumption gradually becomes invalid. The
effect of net currents in the current statistics was considered
by Ebeling reverberation roonfig1,22. Here we thus extend
his work to open quantum and microwave billiards.

Il. THE CURRENT STATISTICS FOR ANISOTROPIC
RANDOM GAUSSIAN FIELDS

First, following [10] we perform a phase transformation,

x) — €9{(x) = p(x) +iq(x), (4)

to new fieldsp(x) and g(x) with the condition that the sta-
tistical averagépq)=0. This step eliminates phase ambigu-
ity and ensures that the Gaussian random fipldsmdq are
statistically independent. The phase transformatrcorre-
sponds to diagonalization of the quadratic form in the ex-
pression for the joint probability density

1 1
o) = ot <uU>zeXW[' 2(P)0%) — (U0
X[{(U?)v? + (v?)u? = 2(uv)uv] {,

which is now replaced by the product of two independent
probability densities
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f(p,q) = f(p)f(q), Following [22] we have for the probability density
F(P, P @, = (P, a0 (0, P

1 p?
f(p) = exp(— > )
V2m(p?) 2(p%) __ 1 p{— 1 o0, o 2 }
f(p, ) oD 2Dl[<qx>|o +(P7)0 — APpaopgy (

1 o
f(q) = exn(— )
V2m(eP) (o)
This step is a matter of convenience, which simplifies the
calculation of the wave function and current distribution. 9)

However, we may not assume that the space derivatives %here
fields are statistically independent of the fields. In fact, it

1 1
f y Py = —e - 22 + 2\n2 + 2 y
(a,py) 2mD. xp{ 2D2[<px>q (9P <pqx>qpx]}

follows from the expression for the current density D;D,=de(M), D;={(gZ}p? - (pa,?,
J=PVa-qvp 2 D, = (p2)(eP) - (pa)?. (10)
that Numerical values oD, andD, are also collected in Table I.
(pVay#0, (qVp)#0, (6)  The general form for the characteristic function of a four-

_ _ _ ~dimensional Gaussian fielé(a)=(¢?)) is a product of two
if the mean curren{j) # 0. Here we use the following defi- naracteristic functions

nition of an average,

0(a) = 0,(a)0,(a), (11)
1
<...>:—f dro..., (7)  where

A A
whereA is the area to be sampled. In this work we Aebe 04(a) :J dpdad(p, g e
the area of the billiard. The inequaliti€®) tell that the fields
are anisotropic. In terms of the Berry wave functi@ the _ \/ D;
anisotropy means that the wave vectiréollow a nonuni- - (P2 - ((pgy) —iaD,)?’

form angular distribution over a circle. However, we may
assume that

(M=0(a)=0, (Vp)=0, (Vg)=0,
assumptions which are completely justified by our computer a \/ D,
V(@

0,(a) = J dqdpf (g, p,)e a9

simulations(see Table)l - ((qpy +iaD,)?’ (12)

In order to find the distribution for one component of the
current density, saj,, we introduce the Gaussian probability ~ For the particular cas@?=(q?), (p5)=(q2), Ebeling[22]
density f(p,py,d,0,) [21,23. The function and its corre- has derived the following distribution for the current compo-
sponding characteristic functions are completely determinedent:

by the covariance matrix of the field variables 1 lid G
> P(j) = —exp) = — + 25", (13
P Po  (PD (PP 27 272
(Pg) (g9 (ady (P where we introduced a parameter,
(pa) (ag0 (@ (apo 2=\bD, 14

(Ppo (P (apo  (pd

P (pgo 0 0 L
_| P @ 0 0 ® 7= (PPN = (NP = SKAPAXK D).
0 0 (P {ap [ e
0 0 Qp) (pd Ag to be_ ex_pecte_d the net current gives rise to an asym-
X metric distributionP(j,). In the case that the net flow through

The structure of the matrix is a consequence of the symmetrihe cavity is only a small fraction of the total induced flow
properties of the correlation functiorj®1]. It also agrees we may, to a good approximation, drop the second term in
with our numerical simulations for the wave transmissionthe exponential factor. The symmetric form frqa0],
through the Sinai billiardsee Table | beloy As seen from lid
the table, the averagg?) does not equalg®). This is also P(j,) = —exp(— —X)
true for the related pai¢p2) and{(g2). The equality(pg)= 27
—-(qpy is, however, satisfied with good accuracy. is then obtained.

which for the present case equals

(15
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Let us now consider the general case Wiph) # (¢?) and _ | T
(p2)#(g?. The distributionP(j,) may then be generated <J><>=|__:|__' (24)

from ©(a) by the following integration: ] ) ] Y y
whereL, is the height. This relation should be a good ap-

S . aq . ap\\_1 (7 iai proximation, for example, for Sinai and Bunimovich billiards
Py = <5<Jx_ P +q5)> - er_w ©(a) e da. with moderately large circular sections in the reflecting
walls.
(16) The elementary expressions above suggest a simple way
With the notations of estimating(j,) oncel is known from, for example, mea-
oy 2 o2 surements. They also explain why the simple isotropic ex-
@, = M = m B, = G = RS pression in(15) many times turns out to be a good approxi-
D, ’ D, ’ DZ ' D mation also for cases wher(or T) is large, as found in Ref.

(17) [10]. The mean valugj,) simply takes a small value whery

happens to be large.
we therefore obtain

* eZixdz IV. NUMERICAL RESULTS FOR AN OPEN CHAOQOTIC
SINAI BILLIARD

P(jx =

277\"DlDzJ—oC V(iz= ay)? = Bi\(iz+ a)* - B, _ o o _
(18) As a numerical application and verification of the analytic
expressions above foP(j,) we consider an open two-
Numerical values of the averages (h7) are collected in dimensional Sinai hard-walled billiard coupled to a pair of
Table I. With the special choice;=-a, and 8;=8, we re-  opposite leads of widtll, as in the inset in Fig. 2. 1f10]
cover expressiofil3). numerical results for the current statistics for the Bunimov-
ich stadium was compared with theory, assuming that the net
lll. RELATION BETWEEN MEAN NET PROBABILITY current density could be approximately set equal to zero as in
CURRENT DENSITY AND TOTAL CURRENT (15). One reason for the small current density was the par-
In order to estimate a mean value of the net probabilityticular choice of perpendicular leads. In the present case op-
current we consider transmission through a billiard of arbi-posite leads are lined up perfectly in order to facilitate direc-
trary form with two straight leads attached to the billiard in tional flow and a noticeable net current, as will be seen
the x direction as in Fig. 1. For convenience we choose theéelow.

single incident wave, The size of the rectangular part in Fig. 2ligx L,, andR
1 the radius of the circular cutoff. Here we lej/L,=4/3 and
YinX,y) = —=€Xp(y), (19) R=L,/6. In the computations, we have made use of the finite
vk difference method with a 600800 numerical grid for the

rectangular area. Two different cases of small and large as-

pect ratios, namelg/L,=1/20 andd/L,=1/10, have been

selected. In the numerical computations we have asasl a

characteristic length scale. The dimensionless wave fre-
jL= i) (200  quency is therefor=dk, wherek is the wave number.

: - . Figure 2 shows the transmission probability vs frequency
for the Cu”e'f“ density within the lead. The c_orrespondmgw of the incident wave for single-channel transmission. Case
total current is thus eqL_JaI tol. If we now take into account (A) corresponds to minimal transmissidi=0 and(j,)~0
reflectionR and transmissiom because of the billiard, we and (D) corresponds ta=0.5 for which(j,)#0. For both
have L .

(B) and (C) the transmission is maximal or nearly so. For

I=1-R=T, (21)  casegA) and(B) the aspect ratio is small, while it is chosen

Ilarge for(C) and(D). Before presenting the numerical results
it is useful to rewrite the definition of averages(in as

wherek is the wave number, and the normalized function
¢n(y) refers to thenth transverse mode of the straight input
lead. From(19) we then have

which is also the current in the output lead. Furthermore, fo
any cross section within the cavity itself we have

120 1
| :f i, dy. (22) (F)= N? Fi, (25)

f1(x)
Finally, an integration of overx from input to output leads WhereN is the number of points of a two-dimensional com-
gives putational grid in the interior of the billiard. The wave func-

tion inside the billiard is normalized as
|
Jo=—F =7 (23) A

N =1 (26)
in accordance with the definition i(Y). For the special case '
of a rectangular billiard withA=L,L, we have the simple Relevant mean values are collected in Table |. The averages
relation (p), (py, (a), and(qy) are not listed in Table | since they are
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FIG. 2. The transmission probabiliflyas a function ofw? for single-channel transmission with=kd. (For electron quantum transmis-
sion w? should be replaced b/ E,, whereEq=#%2/2md andm is the electron magsThe inset shows the hard-walled Sinai billiard with
two opposite aligned leads. The cases of small and large aspectdétips1/20 andd/L,=1/10 areshown in the left and right panels,
respectively. The statistics discussed in the text reféAte(D).

negligibly small;(j,) is also omitted since it must vanish for (P

the present case. €= o (28)
From Table | we find that the random field inside the

billiard is effectively isotropic, i.e.D;~D,, whenT is close in Table I gives the relative importance of the real and imagi-

to zero(case A. Figure 3 shows the statistics for the wave nary parts of the scattering wave function(#). For case A

function and currents for this case. As shown in the inset théhe imaginary part evidently dominates. As a result there is a

real part ofys obviously obeys a Gaussian distribution very small net current density which is consistent with the
small transmission probability as if24). Since p<q, the
_ distribution function of the squared modulgs |#|°=p?+q?
f(p)_qu"f(p’qX) @7 is described well by the Porter-Thomas distributiBfp)

) ) =(1/\s‘°2—7rp exp (-p/2) for closed billiards with time reversal
very closely, as it should for a random field. The parameter,; gyojution of the distributiorP(p) with increasing trans-

issi bability is gi in9].
0.25 0.05 mission probability is given if9]

0.04 The parametek in (28) is closely related to the phase
o2l o 0.04 rigidity of the wave function, introduced by van Langeh
=015 0.02 /\ _.0.03 al. [23],
T T
0.1 0 0.02 2\ _ /n2\|2
% 0, 1,5 PP 29
0.05 p/<p™> 0.01 (<p2> + <q2>)2
0 0
0 p/fp> 10 0 ;”/ 10 The relation between these two parameters is simply
]/ T
-2 -2 1-€)\2
r=< 62> . (30)
" - 1+
;_5"_6 f_e The parameter measures the phase rigidity of a chaotic
= £ complex wave function in the transition between a closed
-8 -8 billiard and a completely open one. We presented in Table |
10 10 both parameters andr. One can see from Table | that these
-0 -5 0 5 10 -0 -5 f/J 5 10 parameters strongly fluctuate with frequency. The distribu-
/T b tion P(r) was first calculated ifi24,25, which is important

to consider for averages over a frequency windfig).

FIG. 3. Statistics for the transmission through the Sinai billiard However, here we consider statistics for single-mode trans-

for T=0 (case A shown in Fig. )2 The upper left panel shows the = . . -
computed distribution fop=|#|? together with the Porter-Thomas mission at a given fixed frequgncy. . . .
distribution P(p) (solid curve. In the inset of the same panel the ’(_)Zur_zcomputed (_:urrent dIStrIbutlorB.(Jx) _and P(j) for j )
computed wave-function statistidgp) for the real part ofy is = VIx*ly are also displayed for case Ain Fig. 3. The numeri-
compared with a random Gaussian distributisalid curve. In the €@l results, which derive from all points in the billiard, are
upper right panel the distribution for the current denditj) is evidently well described by the analytic expressias) for
shown together with the theoretical prediction for the c4ge=0.  zero net current density and the related expression t@-
Lower panels show the computed distributions forttendy com-  rived in [10]. We thus conclude that the wave function is
ponents off on a logarithmic scale together with the analytic ex- nearly real at small transmission and is well approximated by
pression(15) (straight solid lines a real isotropic random field for cases like A. Hence, the
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in Fig. 2. Thin straight lines irda, b) refer to the exact formulél8)
and dashed lines to the simplified expressio(iis). Wave-function
statistics are shown for the real parof ¢ in (4). The statistics for
the imaginary part) show similar behavior. Thin solid curves (o,

d) refer to the Gaussian distributions ffp) in (27).

FIG. 5. Current statistics for case D in Fig. 2. The thin solid line
FIG. 4. Current and wave-function statistics for the transmissiorshows the exact formulgl8).

through the Sinai billiard for the cases(B, ¢ and C(b, d) shown

the components of the current densiBoynting vectoy for

an open Sinai billiard with two opposite attached straight
leads. We have found that the net currgipi with x as the
transport axis is proportional f6/L,. Assuming that the real

and imaginary parts of the scattering function are random
Thomas-Porter distribution and the isotropic current distribu-Gaussian field§10] and following Ebeling[21,22, we have

tion in (15) apply. In case B the net current density is finite, derived an analytic distribution for the current components.
(j»/k=0.023, and the mixture of real and imaginary parts We have also solved for the true scattering wave function by
andq is intermediate withe=0.377. The current statistic is numerical methods.
therefore asymmetric foy,, while it remains symmetric for The distributions have been studied for different values of
jy» as in Fig. 3. The numerical difference between expresthe transmission and net currents that increase from zero to
sions(13) and (18) is small and both of them apply over 4 finjte values. For small net currents the statistics are found to
orders of magnitude. In the right tail, however, there is ape perfectly described by analytical distribution functions.
characteristic deviation from the universal distribution. As the net current is increased, however, the statistics of the
We now turn to the statistics at the larger aspect ratioscattering function are found to deviate from predictions
d/L,=1/10. Thus, cases D and C show larger net currenpaseqd on the random Gaussian fields. Even at rather small
densities(j,) than case B, in spite of its large transmission. net cyrrent densities, as for C and D in Fig. 2, for which the
The corresponding current and wave-function statistics arg aye-function statistics are approximately described by the
shown in Fig. 4. As for case B the difference between theg, ssian distribution as in Figs(c# and 4d), the current

two analytic forms foiP(j,) is smaI_I and_ there_is good agree- statistics have noticeable features for large currents as shown
ment between theory and numerical simulations over sever Figs. 4a) and 4b). To find a plausible reason for the

orders of magnitude. The structure in the right tail is very 4o . 00 e proceed in the following way. In line Wig6]

much the same as found for case B. . ;
It is surprising that the difference between the exact for_F|g. 6 shows how the current flow for the true scattering state

mula and the approximate one is so small in spite of quite gay be decomposed into “internal a_nd e>§ternal parts. The

large anisotropy of the scattering functigfiable . How- internal part never makes connection with the leads and

ever, for larger currents along transpafor j,/= roughly therefore does not contribute to the net transport through the
) X

exceeding bthere is, as mentioned, a noticeable difference
between analytic formulas and numerical statistics. However,
if plotted on a linear scale as in Fig. 5, this difference appears
quite small. In Figs. &) and 4d) we notice also that distri-
butions of the real/imaginary parts of the scattering function
p andq do not fit perfectly to the Gaussian distributions. We
therefore conclude that the more the billiard becomes open
because of the leads, the less may the scattering function be
described as a random Gaussian complex field.

FIG. 6. Flow lines in a rectangular Sinai billiard with numerical
sizes.(a) Only flows connecting input and output leads are shown.

We have considered distributions for scattering wave-<b) Internal flows which do not contribute to the net current are
function amplitudegreal or imaginary partp andq) and of  shown.

V. CONCLUDING REMARKS

026201-6



CURRENT STATISTICS FOR WAVE TRANSMISSION. PHYSICAL REVIEW E 70, 026201(2004)

-2 ; ; ; ; ; ; currents circulate. The results displayed in Fig. 7 show that
the internal currents are isotropic and follow the simple ana-
_al lytic form for P(j,) in (15) over several orders of magnitude.
Deviations in the tails are opposite the full statistics, includ-
_al ing both “internal” and “external” currents. Therefore the
detailed behavior of the tails in Fig. 2 are related to the net
R current flow between the two opposite leads.
Tx 5f In conclusion, we have shown that the current statistics
a for an open chaotic electron/microwave billiard may, to a
=4 _6} good approximation, be obtained by simply replacing the
true scattering wave function by a complex Gaussian random
field. The agreement with numerical simulations is indeed
i satisfactory over several orders of magnitude. In spite of the
neglect of boundary effects the simple random-field model
-8 thus proves quite useful. Here we have focused on only two
specific applications, but the analysis is relevant also to other
-9 classical wave cavities as, for example, open planar acoustic

reverberation rooms, elastic membranes, and water surface
waves in irregularly shaped vessels.
Finally, we emphasize that the current statistics over the
FIG. 7. Statistics of “internal” currents on a logarithmic scale billiard ar.ea were ConSIde.re.d for a fixed frequency, Slngle_-
7 . o mode, microwave transmission. However, to perform addi-
for case C shown in Fig. 4. The area over which the statistics wer%onal averages over the frequency window ensemble, the
computed does not intersect the external flow lines shown in Fig. 6. A . . ’
The solid line shows the analytical distributi¢b5) for which (j,» phase rigidity(30) distribution becomes importaft9]. Un- .
-0. fortunately, after such an ensemble average, the current dis-
tribution cannot be derived in simple analytic forms as in
cavity. Consequently, the net current is carried by the extert13).
nal part. It is noteworthy that the “internal” currents occupy
a major fraction of the billiard and that vortices are related to ACKNOWLEDGMENTS
these currents only. We are grateful to Anton Starikov for an assistance in
To demonstrate that small tails in the current distributionsnumerical computation. This work was supported by the
shown in Fig. 2 are related to the “external” currents we haveRoyal Swedish Academy of Sciences and the Russian Foun-
performed statistics over the area in which only “internal” dation for Basic ReseardiRFBR Grant No. 04-02-16408
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